Вихревой теплогенератор
Категория: Технологии | Автор: admins | (23 октября 2016)
 

Вихревой теплогенератор


all-site125.jpg (18.92 Kb)Возрастающая стоимость энергоресурсов, используемых для теплоснабжения, ставит перед потребителями задачу поиска более дешевых источников тепла. Вихревые теплогенераторы – источник тепла XXI века.

Выделение тепловой энергии основано на физическом принципе преобразования одного вида энергии в другой. Механическая энергия вращения электродвигателя передается на дисковый активатор – основной рабочий орган теплогенератора. Жидкость внутри полости активатора закручивается, приобретая кинетическую энергию. Затем, при резком торможении жидкости, возникает кавитация. Кинетическая энергия преобразуется в тепловую, нагревая жидкость до температуры 95 град. С.

КПД таких установок достигает 150%
all-site132.jpg (28.76 Kb)
до V2 = 0,14 м/мин, через теплогенератор вода прокачивается за 3,5 минуты. Одновременно поток вовлекается дисками во вращательное движение с частотой вращения 3000 об/мин. Линейная скорость вращающегося потока изменяется от V3 = 565 м/мин у вала, до V3 = 3485 м/мин у корпуса теплогенератора. Под действием центробежных сил вода перемещается от центра к периферии теплогенератора. В центре возникает разряжение, а у корпуса избыточное давление. Кроме этого диски имеют отверстия и специальный профиль поверхности, которые вызывают турбулентность в потоке воды. Создаются условия для возникновения гидравлической кавитации.



Кавитация (от лат. cavitas -- пустота), образование в жидкости полостей, заполненных газом, паром или их смесью (так называемых кавитационных пузырьков, или каверн). Кавитационные пузырьки образуются в тех местах, где давление в жидкости становится ниже некоторого критического значения pkp (в реальной жидкости pkp приблизительно равно давлению насыщенного пара этой жидкости при данной температуре). Двигаясь с потоком и попадая в область давления р < ркр, они теряют устойчивость и приобретают способность к неограниченному росту. После перехода в зону повышенного давления и исчерпания кинетической энергии расширяющейся жидкости рост пузырька прекращается, и он начинает сокращаться. Если пузырёк содержит достаточно много газа, то по достижении им минимального радиуса он восстанавливается и совершает нескольких циклов затухающих колебаний, а если газа мало, то пузырёк схлопывается полностью в первом периоде жизни.
В теплогенераторе пузырьки возникают в зоне разряжения и отбрасываются центробежными силами на периферию, где схлопывается. Гидродинамическая кавитация характеризуется тем, что вся масса жидкости участвует в процессах образования (развития и схлопывания) кавитационных полостей. Создаются условия генерирования кавитационных пузырьков, близких по величине диаметра.
Газы и пары внутри пузырька сжимаются, интенсивно выделяя тепло, за счет которого повышается температура жидкости в непосредственной близости от пузырька, и, таким образом, создается горячая микрообласть. Точные значения температур и давлений, достигаемыe при схлопывании пузырька, трудно определить как теоретически, так и экспериментально. Для приближенного описания динамики схлопывания пузырька были предложены различные теоретические модели, характеризующиеся разной степенью точности. Недостаток всех этих моделей - невозможность точного описания динамики пузырька на заключительных стадиях схлопывания. Температуру схлопывающегося пузырька невозможно измерить термометром, поскольку рассеивание тепла происходит слишком быстро. Согласно оценкам Иллинойского университета в Эрбана-Шампен скорости нагрева и охлаждения жидкости превышают 109oC/с. Это соответствует скорости охлаждения расплавленного металла при его выплескивании на поверхность, охлажденную до температуры вблизи абсолютного нуля. Д. Хаммертон установил наличие двух различных температурных областей, связанных со схлопыванием пузырька. Газ, содержащийся в пузырьке, достигает температуры около 5500oC, тогда как жидкость в непосредственной близости от пузырька - 2100oC. Для сравнения - температура пламени ацетиленовой горелки составляет около 2400oC. Хотя давление, достигаемое при схлопывании пузырька, труднее определить экспериментально, чем температуру, между этими двумя величинами существует корреляция. Таким образом, для максимального давления можно получить оценку 500 атм. Несмотря на то, что температура этой области чрезвычайно высока, сама область настолько мала, что тепло быстро рассеивается. Поэтому в любой момент времени основная масса жидкости имеет температуру не выше +95 оС. Реально, в зависимости от температуры теплоносителя на входном патрубке и объема прокачки, за один проход через теплогенератор, теплоноситель нагревается на 14 - 24оС.


 (Голосов: 0)

 



Была ли полезной Вам статья?
Да Нет

Только зарегистрированные пользователи могут оставлять в данной новости свои комментарии.

У нас искали:
https:  вихревой генератор ( 10 Октября 2016г. 21:16)
mail  вихревые кавитационные теплогенераторы ( 7 Октября 2016г. 17:26)
rambler  вихревой кавитационный теплогенератор ( 17 Сентября 2016г. 10:41)
mail  кавитационный теплогенератор своими руками ( 4 Июля 2016г. 11:29)
mail  кавитационный теплогенератор отзывы ( 19 Июня 2016г. 09:32)